
INTRODUCTION TO JAVA

Java is a platform independent programming

language created by James Gosling from Sun

Microsystems in 1991

JAVA COMPILATION

ORDINARY COMPILATION:

SOURCE

PROGRAM

COMPILER FOR MACINTOSH

COMPILER FOR WINDOWS XP

COMPILER FOR UNIX

MACHINE CODE FOR MACINTOSH

MACHINE CODE FOR WINDOWS XP

MACHINE CODE FOR UNIX

JAVA COMPILATION

JAVA

PROGRAM JAVA COMPILER
JAVA

BYTECODE

JAVA INTERPRETER

FOR MAC

JAVA INTERPRETER

FOR WINDOWS XP

JAVA INTERPRETER

FOR UNIX

JAVA VIRTUAL MACHINE (JVM)

Java programs are compiled by the JAVA

COMPILER into BYTECODE. The Java virtual

machine interprets this bytecode and

executes the Java Program.

PROGRAM PROGRAM

JVM

OPERATING SYSTEM

HARDWARE

CHARACTERISTICS OF JAVA

1) Write Once Run Anywhere (WORA).

2)Light weight code.

3)Security.

4)Built-in-graphics.

5)Object oriented language.

6)Supports Multimedia.

7)Platform Independent.

8)Open product.

RAPID APPLICATION DEVELOPMENT(RAD)

Rapid development of application is possible

through RAD tools. The RAD tools are the

tools that enable one to create applications

in shorter time compared to other

conventional language.

Definition: RAD describes a method of

developing software through the use of pre-

programmed tools.

INTRODUCTION TO NETBEANS JAVA IDE

NETBEANS IDE is a free ,open source ,cross platform

IDE(Integrated Development Environment) with built-in

support for JAVA programming.

NetBeans offers:

1. Drag and drop GUI creation.

2. Excellent editing(advanced source code editor)

3. Web services

4. Excellent debugging

5. Wizard, code generation and management tools

STEPS TO PROGRAM JAVA IN NETBEANS

 Open NETBEANS IDE.

 Create a new project (File -> New project)

 Click on Java and Java application options

 Enter the project (name should be related to the program)

 Click on Finish button.

 Project name will be displayed

VISUAL TOUR OF NETBEANS

CHAPTER-2: JAVA CHARACTER SET

CHARACTER SET is a set of valid characters that a language can recognize.

A character represents any letter, digit or any other sign.

JAVA uses UNICODE character set.

UNICODE is a two-byte character code that has characters representing almost all
characters in all language.

UNICODE is similar to ASCII character set.

UNICODE character is represented by using escape sequence(\u) followed by a
four digit hexadecimal number.

for example:

\u00AE

\u0022 “ The double quote

\u0394

c The copyright symbol

The capital Greek letter delta

TOKENS

Tokens are the smallest individual unit in a program.

Types of Tokens:

1) Keywords

2) Identifiers

3) Literals

4) Punctuators

5) Operators.

KEYWORDS:

Keywords are the words that convey special

meaning to the language compiler.

Eg:

void,if,return,while,public,float,switch,else,

byte,class,char,goto.. etc.

IDENTIFIERS:

Identifiers are the fundamental building

blocks of a program.

RULES FOR FORMING IDENTIFIERS:

1) Identifiers can have

alphabets,digits,underscore and doller sign

characters.

2) Identifiers must not be keywords or

Boolean literal.

3)Identifiers must not begin with digit.

4) Identifiers can be of any length.

VALID IDENTIFIERS:

Myfile
_as

a_z

file1

$1_to_$10

date23_5_16

INVALID IDENTIFIERS:

DATA-REC

26ISWK

VOID

MY.FILE

LITERALS:

Literals(often referred to as constants) are data

items that never change their value during a

program run.

Java allows:

1) Integer literals:

IL are the whole numbers without any fractional

part.

There are three types of integer literals:

1) Decimal (base 10)

2) Octal (base 8)

3) Hexadecimal(base 16)

2) Character literals:

A character literal is one character enclosed in

single quotes.

Eg: ‘z’

3) Floating literals:

Floating literals are called as real literals. Real

literals are numbers having fractional part.

The two forms of real literals are fractional form

and exponent form.

VALID REAL LITERALS:

2.0,-12.89,-0.0234

INVALID REAL LITERALS:

89.

+89/3

34,780.76

45,890

STRING LITERALS:

Multiple character constants are called as

string literals.

Eg: “ISWK”

PUNCTUATORS:

The following characters are used as

punctuators(also known as seperators)

[] () { } , ; : * = #

OPERATORS:

Operators are tokens that trigger some

computation when applied to variables in an

expression.

1) Unary operators:

Unary operators are the operators that

require one operator to act upon.

&-address operator

+ unary plus

- unary minus

++ increment operator

-- decrement operator

BINARY OPERATORS:

Binary operators are the operators that act

upon two operands to operate upon.

Arithmetic operators:

+ Addition

- subtraction

* multiplication

/ division

% reminder/modulus

Logical operator:

&& logical AND

II logical OR

Relational operator:

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equal to

!= not equal to

DATA TYPES:
Data types are the means to identify the type of data and

associated operations of handling it.

There are two types of data types

1) Primitive data type:

Java provides 8 primitive data types

Byte,short,int,long – Numeric Integral primitive types.

float,double – Fractional primitive types

char – Character primitive types

Boolean – Boolean primitive types

2) Reference data type:

Reference data type are constructed from primitive data types.

These are classes,arrays and interface.

Variables:

Variables represent named storage location whose

values can be manipulated during program run.

Declaration of variable:

Syntax:

type variablename;

eg: int a;

Initialization of variables:

eg: int a=10;

Text Interaction Methods:

There are 3 types of text interaction methods in Java.

1) getText() method:

A getText() method returns the text currently stored in

text based GUI component.

Swing components that support getText() method are

Text field,Text area,Button,Label,Check box and Radio

button.

Eg: jTextField1.getText()

2) setText() method:

A setText() method stores or changes text in a text based

GUI component.

Swing components that support setText() method are

Text field,Text area,Button,Label,Check box and Radio

button.

Eg: jTextField1.setText(“class X”)

3) Parse…() method:

Parse…() method helps to parse string into different numeric types.

Byte.parseByte(String s)-converts a string into a byte type value.

Short.parseShort(String s) -converts a string into a short type value.

Integer.parseInt(String s) -converts a string into a integer type value.

Long.parseLong(String s) -converts a string into a long type value.

Float.parseFloat(String s) -converts a string into a float type value.

Double.parseDouble(String s) -converts a string into a double type

value.

Eg: String a=jTextField1.getText();

int b=Integer.parseInt(a);

PROGRAMMING CONSTRUCTS
The statements inside your source files are generally executed from top

to bottom, in the order that they appear. Control flow statements,

however, breakup the flow of execution by employing decision

making, looping, and branching, enabling your program to

conditionally execute particular blocks of code.

DIFFERENT TYPES OF PROGRAMMING CONSTRUCT:

1. SEQUENCE

2. SELECTION

SEQUENCE CONSTRUCT: Sequence construct

means the statements are being executed

sequentially. It is a default flow of statement

from top to bottom.

SELECTION : A selection statement selects

among a set of statements depending on

the value of a controlling expression. They

are also called as Decision Making

Statements. They are:

if statements

if else statements

if statements: The if statement allows

selection (decision making) depending upon

the outcome of a condition. If the condition

evaluates to true then the statement

immediately following if will be executed and

otherwise the first set of code after the end

of the if statement (after the closing curly

brace)will be executed.

Simple if:

The syntax of if statement is as shown

below:

int x=Integer.parseInt(jTextField1.getText());

if(x>20)

jLabel3.setText(“X is greater than 20”);

else

jLabel3.setText(“X is less than 20”);

The if...else Statement: An if statement can

be followed by an optional else statement,

which executes when the Boolean expression

is false. syntax of if-else statement is as

shown below:

ADDITION OF TWO NUMBERS

FIRST NUMBER

SECOND NUMBER

RESULT

ADD

jLabel2

jLabel1

jLabel3

jLabel4

jTextField1

jTextField2

jTextField3

jButton1

DESIGN A JFRAME TO ADD TWO NUMBERS

ON CLICK OF ADD BUTTON:

int num1=Integer.parseInt(jTextField1.getText());

int num2=Integer.parseInt(jTextField2.getText());

int num3=num1+num2;

jTextField3.setText(“”+num3);

